Normal forms for rank two linear irregular differential equations and moduli spaces
نویسندگان
چکیده
We provide a unique normal form for rank two irregular connections on the Riemann sphere. In fact, we birational model where introduce apparent singular points and bundle has fixed Birkhoff–Grothendieck decomposition. The essential poles parabolic structures. first one only depends formal type of points. latter determines connection (accessory parameters). As consequence, an open set corresponding moduli space is canonically identified with some Hilbert scheme explicit blow-up Hirzebruch surface. This generalizes previous results obtained by Szabó to case. Our work more generally related ideas descriptions Oblezin, Dubrovin–Mazzocco, Saito–Szabó in logarithmic After version this appeared, Komyo used our compute isomonodromic Hamiltonian systems Garnier systems.
منابع مشابه
Moduli Spaces for Linear Differential Equations and the Painlevé Equations
In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlevé equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and irregular singularities to a corresponding catetorical moduli space of analytic data (i.e., ordinary...
متن کاملSecond-order linear differential equations with two irregular singular points of rank three: the characteristic exponent
Abstract For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The Stokes multipliers are represented by converging series with terms for which limit formula...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On moduli spaces of symplectic forms
We prove that there are simply-connected four-manifolds which admit ntuples of symplectic forms whose first Chern classes have pairwise different divisibilities in integral cohomology. It follows that the moduli spaces of symplectic forms modulo diffeomorphisms on the manifolds are disconnected.
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Periodica Mathematica Hungarica
سال: 2021
ISSN: ['0031-5303', '1588-2829']
DOI: https://doi.org/10.1007/s10998-021-00408-8